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We demonstrate that kinematic simulation �KS� of three-dimensional homogeneous turbulence produces
fluid element pair statistics in agreement with the predictions of L F. Richardson �Proc. R. Soc. London, Ser.
A 110, 709 �1926�� even though KS lacks explicit modeling of turbulent sweeping of small eddies by large
ones. This scaling is most clearly evident in the turbulent diffusivity’s dependence on rms pair separation and,
to a lesser extent, on the pair’s travel time statistics. It is also shown that kinematic simulation generates a
probability density function of pair separation which is in good agreement with recent theory �S. Goto and J.
C. Vassilicos, New J. Phys. 6, 65 �2004�� and with the scaling of the rms pair separation predicted by L. F.
Richardson �Proc. R. Soc. London, Ser. A 110, 709 �1926��. Finally, the statistical persistence hypothesis
�SPH� is formulated mathematically and its validity tested in KS. This formulation introduces the concept of
stagnation point velocities and relates these to fluid accelerations. The scaling of accelerations found in
kinematic simulation supports the SPH, even though KS does not generate a Kolmogorov scaling for the
acceleration variance �except for a specific case and a limited range of outer to inner length-scale ratios�. An
argument is then presented that suggests that the stagnation points in homogeneous isotropic turbulence are on
average long-lived.
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I. INTRODUCTION

A. Searching for Richardson’s dispersion laws
in turbulent flows

Richardson �1� made the first quantitative prediction rel-
evant to inertial-range turbulence when he proposed the
locality-in-scale hypothesis and derived the “four-thirds” law
for diffusion in isotropic turbulence,

d

dt
��2�t�� � ��2�2/3, �1�

where � is the separation of the two fluid elements.
Many years later, two independent studies �2,3� applied

similarity theory �4� to the locality-in-scale hypothesis and
obtained Eq. �1�, which, when integrated, gives the temporal
scaling of

��2�t�� � �t3 �2�

in the inertial range.
Understandably there has been much interest in verifying

these relations both experimentally and numerically. Experi-
mental studies are notoriously difficult due to the need to
capture Lagrangian statistics of two neutral marker particles
simultaneously in the same turbulent flow. Nevertheless, re-
cent laboratory experiments �5,6� have claimed significant
ranges of ��2�t��� t3 in two- and three-dimensional turbu-
lence, respectively, despite having limited Reynolds num-
bers, R� of around 100 �the Reynolds number is not reported
in Ref. �5� so we take the value reported for an identical
experimental setup �7��. However, there are doubts as to
whether these laboratory experiments really do observe a t3

regime or merely a low-Reynolds-number transitional re-
gime that is locally approximated by a t3 growth.

Direct Numerical Simulation �DNS� experiments are also
faced with the difficulty of simulating Reynolds numbers
that could be considered high enough for purely inertial-
range statistics to be produced. References �8–10� simulated
relative dispersion in a turbulent flow with an R� comparable
to the experimental values. While Ref. �8� cautiously re-
ported some evidence of a t3 regime over a time range so
small that such caution was fully justified, Refs. �9,10� pre-
sented evidence that spurious t3 regimes can result from
strong dependencies on initial conditions. Reference �11�,
taking advantage of more powerful computing resources,
simulated relative diffusion in a flow with R�=283 and re-
ported a t3 regime although, again, the results were highly
dependent on the initial separation of the particle pair
throughout the power-law range, which should not be the
case in an authentic t3 regime. However, these simulations
remain some way from the extremely high Reynolds num-
bers required to capture pair-diffusion statistics and mecha-
nisms, so other techniques must also be used to further in-
vestigate pair dispersion.

Synthetic turbulence and, more specifically, kinematic
simulation �KS�, has been used in numerous studies of rela-
tive turbulent diffusion. Velocity fields constructed from
stream functions built from radial octaves impose an energy
spectrum, E�k��k−5/3, onto the field and observe a clear Ri-
chardson t3 regime �12�. Hitherto, studies involving KS �see
Sec. I B for a full description of the model� have presented
Richardson ranges of ��2�t��� t3 spanning more than a de-
cade for two-dimensional simulations �13�. Three-
dimensional studies �14� present evidence showing that Eq.
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�1� is verified over a significant range of scales. Recently,
however, it has been proposed �15� that the KS model’s lack
of sweeping �see Sec. II A� should imply

d

dt
��2�t�� � ��2�7/9, �3�

instead of Eq. �1� and a corresponding ��2�t����t9/2 behav-
ior in the inertial range. These authors �15� also present KS
evidence to that effect.

Therefore in the first half of this paper we investigate the
temporal scaling of the mean-square separation in three-
dimensional KS and show that neither a t3 nor a t9/2 scaling
region is clearly observed. The differences between this and
previous KS studies on the one hand and the KS study of
Ref. �15� on the other are investigated in terms of the turbu-
lent diffusivity, d

dt ��
2�t��, and the time step of integration. It

is shown that the difference in computational resources of
the two studies is not a significant factor but that the numer-
ics of the latter study �15� may favor their theoretical argu-
ment. We corroborate the previous three-dimensional result
�14�, that, in spite of the absence of sweeping in kinematic
simulation, Eq. �1� holds rather than Eq. �3� and ask whether
an approach based on the principle of straining stagnation
points �17� might account for the validity of Eq. �1� in KS.
This leads us to study the entire probability distribution func-
tion �PDF� of ��	�	 in kinematic simulation as well as the
scalings of exit times �12�. On the basis of a generalized PDF
equation �17� we establish a relation between ��2�t�� and the
average travel time a fluid element pair takes to separate
from its initial condition to some specified threshold. Finally,
we introduce a quantitative formulation of the statistical per-
sistence hypothesis �17,18� �SPH� and we use this formula-
tion to demonstrate the validity of this hypothesis in Kol-
mogorov turbulence, and to determine its validity in KS.

B. Kinematic simulation

Kinematic simulation �KS� is a method for simulating La-
grangian statistics and turbulent diffusion properties. KS is
based on a kinematically obtained Eulerian velocity field that
is incompressible and consistent with Eulerian statistics up to
the second order, such as the energy spectrum E�k� in wave-
number space. There is no assumption of Markovianity at
any level. Instead, a persistence parameter � controls the
degree of unsteadiness of the turbulence. It is worth mention-
ing that when the prescribed energy spectrum has the form
E�k��k−5/3 the model is in good agreement with laboratory
experiments for two-particle statistics �14�, three-particle sta-
tistics �19�, and concentration variances �20� �the term “par-
ticle” that is used here is interchangeable with “fluid ele-
ment”�. KS is also in good agreement with DNS for two-
particle statistics �21�.

The flow velocity at a point x and a time t is constructed,
in the case of homogeneous turbulence, by the summation of
independent, randomly orientated, Fourier modes. These
modes represent the contribution of a finite number of turbu-
lent modes in the inertial range of the Eulerian energy spec-
trum. Hence kinematic simulation should only model the

flow field in a qualitative and highly reduced sense. What is
not modeled in kinematic simulation are the phase correla-
tions between Fourier modes, their interactions, and their
dynamics. Lagrangian statistics are achieved by synthesizing
physical space only along particle trajectories.

The formulation of the velocity field used in this study
follows from more recent kinematic simulation studies
�13,20�. The KS velocity field is kinematically prescribed to
be

u�x,t� = 

n=0

Nk

ancos�kn · x + �nt� + bnsin�kn · x + �nt� , �4�

where Nk is the total number of representative Fourier
modes, an and bn are the decomposition coefficients corre-
sponding to the wave vector kn and �n is the unsteadiness
frequency.

The wave vector

kn = knk̂n �5�

is randomly orientated by a random choice of the unit vector

k̂n. The wave numbers are distributed via

kn = k1� kNk

k1
��n−1�/�Nk−1�

, �6�

with n an integer such that 1�n�Nk. Reference �18� found
that this wave number distribution results in the quickest
convergence of the Lagrangian statistics.

To ensure that the Fourier modes’ orientations are random
and the velocity field still satisfies incompressibility, the ori-
entations of an and bn are chosen independently and ran-
domly in a plane normal to kn, i.e.,

an · kn = bn · kn = 0. �7�

Furthermore, magnitudes of an and bn are chosen to conform
with the prescribed energy spectrum E�k�, i.e.,

	an	2 = 	bn	2 = 2E�kn� � kn, �8�

where

�kn =

k2 − k1

2
n = 1

kn+1 − kn−1

2
n � �2,Nk − 1�

kNk
− kNk−1

2
n = Nk

. �9�

The Eulerian energy spectrum E�k� is the main input in
kinematic simulation of homogeneous isotropic turbulence
�along with a coefficient of the unsteadiness frequency as we
see later on in this section�. The inertial range form of the
energy spectrum �4� is

E�k� = CK�2/3k−5/3, �10�

where � is the rate of dissipation of kinetic energy per unit
mass and CK is the Kolmogorov universal constant. In this
study, KS only models the inertial range of the spectrum
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unless explicitly stated; hence k is within the surrogate iner-
tial range, k1�k�k� where k��kNk

. We use the term “sur-
rogate” to indicate that, in KS, the range k1�k�k� is not
dynamically inertial but simply the range over which the
K41 spectrum �4� is prescribed to hold.

It is also the purpose of this study to consider departures
from Kolmogorov’s − 5

3 law, either as a reflection of intermit-
tency or for the purpose of experimenting with the depen-
dence of various Lagrangian statistics �13,22,23� on the scal-
ing of E�k�. We therefore write the general form of the
energy spectrum

E�k� = CTurms
2 L�kL�−p, �11�

where L= 2	
k1

and p
1 to ensure that there is no infinite
energy at the small scales when k� is taken to infinity. The
dimensionless constant CT=CT�p ,k1 ,k�� is such that

3urms
2

2
= �

2	/L

2	/�

E�k�dk , �12�

where �= 2	
k�

. The form �Eq. �11�� of the spectrum is unam-
biguous in KS where turbulence dynamics are absent and
therefore � is not directly defined. However, by using the
cornerstone turbulence relation �24�

� = C�

urms
3

L
, �13�

where C� is a dimensionless constant, Eq. �11� reduces to Eq.
�10� for p=− 5

3 when CKC�
2/3=CT.

Unless otherwise explicitly stated, the value of p is set to
5
3 in this study. The value of C� does not need to be set as an
input in our simulation and it should not be expected to be
equal to corresponding values published in the literature as L
is not the integral length scale �which, however, scales with
L�.

Time dependence is introduced via an “unsteadiness fre-
quency” �n, which we take to be proportional to the eddy
turnover frequency of the mode n,

�n = ��kn
3E�kn� , �14�

where � is the “unsteadiness” or “persistence” parameter
which, as will be seen in later sections, can have a significant
effect on one-particle two-time Lagrangian statistics
�13,22,23�. In Sec. III we experiment both with Eq. �14� and
with

�n = �urmskn. �15�

Values of � equal to, or very close to, zero generate velocity
fields that are frozen, or approximately frozen in time, i.e., a
velocity field with infinite, or near-infinite, persistence in
time. The other extreme of very large values of � generates
extremely unsteady velocity fields with very fast time varia-
tions and very little persistence of flow structure.

II. TURBULENT PAIR DIFFUSIVITY AND SEPARATIONS
IN KINEMATIC SIMULATIONS

A. Absence of sweeping of small scales by larger scales in
kinematic simulation

Kinematic simulation does not model the advection of
small-scale eddies by large energy-containing motions �25�
due to the independent nature of the Fourier modes. This
problem has been found to significantly affect the properties
of the one-particle Lagrangian statistics extracted from the
model �26� and it has been recently argued by Thomson and
Devenish �15� that relative dispersion, i.e., two-particle sta-
tistics, could also be affected and it is felt that it would be
useful to outline their arguments in this section.

The rate of mean-square separation, or eddy diffusivity,
might be expressed in terms of a characteristic relative ve-
locity �V between fluid element pairs and a time scale � over
which such relative velocities change. Both �V and � are
functions of the mean-square separation ��2�t�� and

d

dt
��2�t�� � �V2� . �16�

Classically, the relative velocity �V obeys Kolmogorov
scaling and �V2�����2�1/2�2/3. The time scale �, often re-
ferred to as the eddy decorrelation time, obeys similar scal-
ing properties provided the small eddies are swept with the
fluid element by the larger eddies �25�. Hence

� � �−1/3��2�1/3. �17�

Substituting back into the diffusivity equation �Eq. �16�� we
recover Richardson’s law,

d

dt
��2�t�� � �1/3��2�t��2/3, �18�

which implies that ��2�t��� t3 for max�� ,�0�� ��2�1/2�L,
where �0���t=0�.

Without the sweeping of the small eddies by the larger
ones, fluid elements are rapidly advected by the large eddies
through the small eddies and so another time scale becomes
important. Then, as argued in Ref. �15�, the eddy decorrela-
tion time becomes of the order of the time it takes the local
flow velocity to sweep the particles through the eddy, i.e.,

� �
��2�1/2

u�
, �19�

where u� is the rms turbulence velocity �averaged over the
pairs’ Lagrangian trajectories and therefore equal to the root-
mean-square velocity of the Eulerian field, urms, in homoge-
neous turbulence �27��. This leads to the diffusivity

d

dt
��2�t�� �

�2/3��2�5/6�t�
u�

, �20�

the integration of which leads to

��2�t�� �
�4t6

u�6 �21�

for max�� ,�0�� ��2�1/2�L.

FUNDAMENTALS OF PAIR DIFFUSION IN KINEMATIC… PHYSICAL REVIEW E 74, 036309 �2006�

036309-3



Thomson and Devenish �15� refine their argument by dis-
tinguishing between different ensembles of pairs which ex-
perience different values of u� as would result from averages
taken over their different histories �in which case there is a
distribution of values of u�, most of which deviate from
urms�. They introduce mean-square separations conditional
on u�, i.e., ��2�u�, so that

��2� = �
0




du�p�u����2�u�, �22�

where p�u�� is the probability density function of the rms
turbulence velocity u�. Recognizing that when u� is small
enough the sweeping problem is absent and therefore
��2�u���t3 applies, whereas when u� is large enough, ��2�u�
is sweeping-dominated so that ��2�t��� �4t6

u�
applies, they es-

timate a velocity which divides these two regimes, that is,
when �t3� �4t6

u�6 , which leads to u����t. Hence

��2� � �
0

��t

�t3p�u��du� + �
��t


 �4t6

u�6 p�u��du�, �23�

and using a Gaussian form for p�u�� with a standard devia-
tion of urms, they obtain

��2�t�� �
�5/2t9/2

urms
2 . �24�

This translates into an overall mean diffusivity contribution
of

d

dt
��2�t�� � ��2�7/9. �25�

B. Kinematic simulation results for mean-square separation
and mean diffusivity

Due to the questions over kinematic simulation’s ability to
reproduce the appropriate scalings for the relative dispersion
of a particle pair and, in particular, the obvious disagreement
between other KS studies �13,14,22� and Ref. �15�, it would
seem appropriate to start by using KS to calculate ��2�t��.
Typical results are depicted in Fig. 1 and the flow parameters
are presented in Table I; the initial separation between the

fluid element pair �0 is 0.1�. The value of the persistence
parameter is chosen as �=0.5 �22,14�. Looking at Fig. 1
neither a regime of ��2�t����t3 nor one of ��2�t����t9/2 is
clearly observed, even though the ratio of outer to inner tur-
bulent length scales, L

� , is 104 and therefore unusually large.
��2�t�� is known to heavily depend on the initial separation
�0 in kinematic simulations over most of the inertial range
when �0��, even for extremely large values of L

� �14,28�.
This strong �0 dependence has now also been observed in
laboratory experiment �16�. This dependence therefore inter-
feres with the time dependency and hence masks it. For �0
=�, however, we do find ��2�t����t3 over an extended
range of scales as reported in Fig. 7.

To minimize this initial separation dependency it has been
argued that Eq. �1� should be calculated directly �14�; this is
easily obtainable in numerical studies yet still presents a sig-
nificant challenge for experimentalists despite the increased
availability of Lagrangian differential quantities �29–32�. We
present the directly calculated diffusivity results for KS in
Fig. 2 for initial separations of �0=0.1� and �0=�.

It is obvious that there is still some residual dependence
on the initial separation. However, a power law is found over
a significant range of scales with three-quarters ��0=0.1�� to
one-half ��0=�� of the inertial range exhibiting the Richard-
son ��2�t��2/3 behavior. This is an overwhelming improve-
ment on Fig. 1, where no correct t3 scaling nor t9/2 scaling
was observed over the temporal inertial range.

The results of Fig. 2 are in stark contrast to those of
Thomson and Devenish �15�, who find strong t9/2 scaling for
the mean-square separation over ranges up to two decades of
the temporal inertial range and so presumably find the appro-
priate form of diffusivity �Eq. �25�� although they do not
present it. In Fig. 2 we present in the inset figure the com-
pensated curves for the case where �0=0.1� corresponding
to diffusivities of d

dt ���
2�t�����4/3 and d

dt ���
2�t�����14/9,

respectively, in an attempt to distinguish between the two
scaling values. Clearly the Richardson scaling remains a
more convincing candidate with strong inertial range power
law. Furthermore, this scaling is surprisingly robust as it sur-
vives even if we decimate the number of modes in KS fur-
ther to, say, NK=10 �see Fig. 3�. With such differences in the
results it is worth examining the main difference between the
simulations of Ref. �15� and those of this study and other
cited papers, namely, the time step used for Lagrangian inte-
grations.

C. Time step

The major difference between the two studies is the
implementation of the integration time step. This study uses

FIG. 1. Particle pair mean-square separation ��2�t��, normalized
with the large scales. No t3 or t9/2 scaling is observed. Flow param-
eters are as in Table I. Initial separation �0=0.1�. Unsteadiness
frequency �n=��kn

3E�kn�.

TABLE I. Run specification for the Richardson pair separation
experiment. NR is the number of KS flow field realizations and Np is
the number of sample trajectories per realization. The Kolmogorov
time scale t�=�−1/3k�

−2/3. The turbulent energy dissipation rate � is
determined by Eq. �13�.

k1= 2	
L

�2	 m−1�
k�= 2	

�
�2	 m−1� Nk

urms

�m s−1� �
�t
�s� NR Np

1.0 10000.0 100 1.0 0.5 0.01t� 100 100
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a constant time step, �t=0.01��, where �� is the Kolmog-
orov time scale. Hence �t��� and we have checked that, in
all the cases studied here, it is also at least an order of mag-
nitude smaller than the sweeping time scale �

urms
. However,

Thomson and Devenish �15� use an adaptive time step of the
form

�t = min�C1
min��,L�

urms
,C2

�min��,L��2/3

��1/3 � . �26�

C1 and C2 are constants that are given the values 0.1 and
0.01, respectively, by Ref. �15�. Note that this adaptive time
step depends on the instantaneous separation of the particles
and so is often larger than the smaller time scales in the flow.
Note also that it is adapted to the expected mix of average
sweeping and inertial time scales that the argument of Ref.
�15� is built on and that it increases, on average with time.

The constant time step is all-resolving and devoid of such
adaptive assumptions. We replace our constant time step with
this adaptive time step and perform an identical simulation to
that specified in Table I. The result is presented in Fig. 4.
�Thomson and Devenish �15� addressed the issue concerning
the validity of their adaptive time step, albeit inconclusively.�

It is also clear that the adaptive time step underestimates
the mean-square separation from quite early on, and that this
underestimation becomes particularly severe at times compa-
rable to and larger than L /urms. The adaptive time step is
effectively constant at large scales �comparable to L� where
it scales as L /urms and can therefore be unacceptably large.
With such a large time step it might not be surprising to find
large deviations from the mean-square separation calculated
by integrating with a constant all-resolving time step as we
do in the case presented here. However, the range of validity
of the adaptive time step as a function of the parameters C1
and C2 on which it depends, integration time, initial separa-
tion, unsteadiness parameter �, and other parameters of the
velocity field would require a full study of its own and is
beyond the scope of this paper. Nevertheless, we can con-
clude that the adaptive time step chosen in Ref. �15� does not
reproduce the correct behavior in the case of Fig. 4 and that
it may therefore be responsible for some of the different KS
results obtained in Ref. �15� compared with all other kine-
matic simulation studies, including this one �we guess that in
some way the adaptive time step “misses out” the persistent
part of the flow; a feature that we explore in the following
sections�. We therefore can also conclude that KS reproduces
Richardson’s law �1� �Eq. �1��. As discussed by previous
authors �14,28�, however, the resulting t3 dependence of ��2�
is not so clear due to strong dependence on the initial sepa-
ration �0, which masks the time dependence.

III. TURBULENT PAIR DIFFUSION AND STRAINING
STAGNATION POINTS

A. Probability distribution function

Kinematic simulation results do not support the eddy dif-
fusivity approach of Ref. �15�, which is based on the idea
that the separation of two particles in a flow is an inherently
continuous process. However, to describe the mechanism of
pair separation in KS we may, perhaps, utilize an alternative
view grounded in the notion that it is the spatial distribution
of straining stagnation points and the discontinuous series of
sudden separation events that such points cause, which fa-
cilitates the observed algebraic separation growth
�13,22,17,34�. DNS of two-dimensional �2D� inverse cascad-
ing turbulence �17� and laboratory experiments in 2D and 3D
turbulence �5,6� have produced compelling evidence of pair
trajectories which travel together for significant durations
and then separate suddenly. We now present a summary of
this approach and then use kinematic simulations to interro-
gate it.

In this approach, fluid element pairs with an initial sepa-
ration �0 will travel together following streamlines at an ap-
proximately constant separation until encountering an
“event” in the flow where the separation is abruptly in-
creased by a factor �ph that is greater than 1, i.e., �=�ph�0.

FIG. 2. Evolution of particle pair mean-square separation rate
d
dt ���

2�t��� with pair separation ��2�t��1/2. Dependency on initial
conditions is significant but less than that for Figs. 1 and 7 and the
expected scaling ��2�t��2/3 is found in the inertial range for both
choices of �0 �flow parameters are detailed in Table I�. The inset
depicts the solid curve in the main plot ��0=0.1�� compensated by
�4/3 �lower solid line� and �14/9 �upper dashed line�; note that the y
axis of the inset figure is linear. Unsteadiness frequency �n

=��kn
3E�kn�.

FIG. 3. Evolution of particle pair mean-square separation rate
d
dt ���

2�t��� with pair separation ��2�t��1/2. Initial separation �0

=0.1�. Dependency on the number of modes NK �all other flow
parameters as in Table I� used in the simulation is extremely small
when looking for the scaling ��2�t��2/3. The inset depicts the com-
pensated curve; note that the y axis of the inset figure is linear.
Unsteadiness frequency �n=��kn

3E�kn�.
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The event can be thought of as a straining stagnation point;
such a point in the flow is characterized by rapidly curving,
divergent streamlines. Note that a scale, let us call it �ssp, is
associated with these stagnation points. This scale character-
izes the spatial extent over which the curvature of the stream-
lines ending at or emanating from these stagnation points
remains significantly correlated. For a separation event to be
likely, � must be comparable to �ssp. Since values of �ssp
exist over all scales due to the fractal nature of their distri-
bution �13,22� this physical picture is very much in the spirit
of the locality assumption of Ref. �1�. So, after n encounters
with n stagnation points the separation becomes

�n = �ph
n �0, �27�

where �ph is an actual physical property of the flow.
It is interesting to note that this picture of turbulent pair

separations by discontinuous bursts can be formulated in

terms of the “exit” time thresholds �35� where the average
time �T����� for a particle pair to pass from one threshold to
another is determined. These exit times can be re-interpreted
to be the average times taken for fluid element pairs with a
separation of � to meet straining stagnation points with a
characteristic length scale �ssp, comparable to, or larger than,
� and then suddenly burst to a separation ��. The average
distance between such straining stagnation points is approxi-
mately ns

−1/d� L
�

�, where ns is the number density of straining
stagnation points �22� and d is the Euclidean dimension of
the embedding space. According to Refs. �16,20�

ns� L

�
� � CsL

−d� L

�
�Ds

, �28�

where Cs is a dimensionless constant of proportionality, and

Ds=
d�3−p�

2 , where the wave-number energy spectrum is
E�k��k−p �in our present KS, d=3, p= 5

3 and Ds=2� �22�.

FIG. 4. Particle pair mean-square separation ��2�t�� normalized with the length scale L= 2	
k1

. This simulation has the same initial
conditions ��0=0.1�� and flow parameters as those used to produce Fig. 1 except we use an adaptive time step �15�, �t

=min�C1
min��,L�

urms
,C2

�min��,L��2/3

��1/3
�. We also plot for comparison, the curve ��2�t�� /L2 vs turms /L of Fig. 1 �obtained with fully resolving

constant time step�. A clear t9/2 scaling is observed in the case of the adaptive time step but not in the case of the constant time step. �a�
��2�t�� /L2� turms

L
�3

vs turms /L, �b� ��2�t�� /L vs turms /L, �c� ��2�t�� /L2� turms

L
�9/2

vs turms /L.
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Reference �16� makes the assumption that, on average, fluid
element pairs move with the rms velocity of the turbulence
urms relative to stagnation points which remain statistically
persistent in the flow in an appropriate inertial frame �see
Sec. IV for a definition and analysis of this concept�. Hence

�T�ph
���� �

ns
−1/d� L

�
�

urms
�

L

urms
��

L
�Ds/d

. �29�

Boffetta et al. �36� use the Richardson PDF equation to
derive the exit times. However, Goto and Vassilicos �17� set
out to derive a generalized PDF equation from their re-
interpreted exit time �Eq. �29��. They construct an equation
for the rate of change of the probability, Qn�t�, that a particle
pair will be separated by a distance that is between �n and
�n+1 �see Eq. �27��,

d

dt
Qn = bn−1Qn−1 − bnQn. �30�

The coefficient bn must be proportional to the inverse of
�T�ph

��n�� hence from Eq. �29�

bn = B
urms

L
��n

L
�−g

, �31�

where g�
Ds

d and B is a dimensionless constant independent
of �n, urms, and L. Goto and Vassilicos �17� show that B
depends on the proportionality constant Cs.

The relationship with the PDF of the pair separation is

Qn�t� = ��nP��n,t� , �32�

where �� ln �ph. Goto and Vassilicos �17� argue that as long
as the change in Qn�t� is small with the change in n then a
Taylor expansion up to the second order is appropriate:

�P

�t
= − B�

�

��
��1−gP� +

B�2

2

�

��
��

�

��
��1−gP�� . �33�

Imposing the initial condition of a vanishingly small separa-
tion and with some work, the solution of this equation is
reached,

P��n,t� = At−1/g� �g

B˜g2t
�1+2/�g−1/g

exp�−
�g

B˜g2t
� , �34�

where A�g ,�� is a normalization factor and B˜ replaces B�2

2 .
This solution reduces to the self-similar form,

P˜��˜� = A˜�˜2/�−1+gexp�− G0
g/2�˜g� , �35�

where P˜��˜�= ��2�1/2P�� / ��2�1/2�, A˜�g ,�� is a normalization
factor and

G0 =

�
0




x1+4/g�+4/ge−x2
dx

�
0




x1+4/g�e−x2
dx

. �36�

We attempt to fit Eq. �35� �with Eq. �36� taken into account�
to PDFs obtained in a kinematic simulation whose flow pa-
rameters are detailed in Table II; the initial separation �0 is
prescribed as � and L

� is set to 103 to facilitate faster com-
putations. Following Ref. �20�, we fix g=

Ds

d = 2
3 . The results

are shown in Fig. 5. A relatively conventional value of �,
namely 1.5, is found to fit the data extremely well �leading to
�ph�4.48 and �g=1�. This value is some way off the value
of �= 6

7 required for Eq. �33� to exactly coincide with the
Richardson PDF equation �1,17�. Nevertheless, KS repro-
duces the Richardson law, Eq. �1�, and agrees with the self-
similar collapse and form of the PDF �17� P�� , t�. It is now
important to investigate whether KS also agrees with the
basic premise of this theory, namely, �T�ph

������ �

L
�2/3 �for

Ds

d = 2
3 �.

B. Time dependencies of pair separation statistics

In this section we define average travel time which, as we
show, can be directly obtained from P�� , t�, and then calcu-
late exit times as differences between two average travel
times. Taking a PDF approach to the problem, we can say
that the probability that a particle pair’s separation � is
above a threshold �n at time t is given by

TABLE II. Run specification for pair separation PDF and related
experiments. NR is the number of KS flow field realizations and Np

is the number of sample trajectories per realization. The Kolmog-
orov time scale t�=�−1/3k�

−2/3. The turbulent energy dissipation rate
� is determined by Eq. �13�.

k1= 2	
L

�2	 m−1�
k�= 2	

�
�2	 m−1� Nk

urms

�m s−1� �
�t
�s� NR Np

1.0 1000.0 100 1.0 0.5 0.01t� 100 100

FIG. 5. Probability distribution functions for particle pair sepa-
ration �. Flow parameters detailed in Table II; initial separation of
fluid element pair �0=�; unsteadiness frequency, �n=��kn

3E�kn�.
The solid line is Eq. �35� using the values �=1.5, g= 2

3 .
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�
�
�n

P��,t�d� . �37�

Similarly, the probability that a particle pair’s separation � is
above the threshold �n after time t+�t is

�
�
�n

P��,t + �t�d� . �38�

The difference between the two probabilities �approximately
�t��
�n

�
�t P�� , t�d� for small enough �t� represents the prob-

ability p�n
�t��t that a pair crosses �n from below �n between

t and t+�t minus the probability that the pair crosses �n from
above �n at the same time. Assuming that the latter probabil-
ity is negligible compared to p�n

�t��t �a reasonable assump-
tion since ��2�t�� increases with time�, we write

p�n
�t� � − �

���n

�

�t
P��,t�d� �39�

�a similar formula is given in Ref. �33��. The average travel
time for a particle pair’s separation to reach �n at t is then
given by

�t��n
= �

0




dttp�n
�t� �40�

so that one might expect

�T���n�� = �t��n+1
− �t��n

, �41�

where �n+1=��n. Note that if �t��n
is a power law of �n,

then �T���n�� is the same power law of �n. Note also that we
can define travel time moments for any power m as follows:

�tm��n
= �

0




dttmp�n
�t� . �42�

Inserting Eq. �33� into Eq. �39� yields

p�n
�t� = B��n

1−gP��n,t� − B� lim
�→0

��1−gP��,t��

− �B�2

2
�n

�

��
��1−gP��,t���

�=�n

+
B�2

2
lim
�→0

�
�

��
��1−gP��,t�� . �43�

Using the similarity solution for the PDF equation �17� �Eq.
�35�� we evaluate the second and fourth terms, respectively,
finding they scale as �2/� and �2/�+g+�2/�, respectively.
Therefore as long as �
1 and g
1 and taking the limit �
→0, both terms are zero. Finally, substituting Eq. �34� into
the two remaining terms we arrive at

p�n
�t� = A˜ exp�− G0

g/2�˜n
g�

�˜n
2/�

�g

B�2

2
G0

g/2�˜n
g. �44�

Here, to alleviate notation, we use the definition �˜n=
�n

� with
����2�1/2.

Since all the time dependency is now contained in the
standard deviation, i.e., �=��t�, and this can be inverted so
that t= t���, we can define a change of variables

�̃2 �
�2

�n
2 , d�̃2 = 2

��̇

�n
2 dt . �45�

Substituting Eq. �44� into Eq. �40� and using these changes
in the variables we obtain

�tm��n
= A˜�n

−g�
0


 d�̃2

�d/dt��̃2��̃�n�
exp�− G0

g/2�̃−g�

�tm��̃2�n
2��̃−2g−2/�B�2

2
G0

g/2, �46�

where m is the moment of the travel time. Note that the
scaling of �tm��n

on �n is independent of �� ln � if t
= t��2� and �2=�2�t� are well-defined power laws. In par-
ticular, � does not have to be equal to �ph� ln �ph.

Disregarding the constants of proportionality since we are
only interested in the scaling properties of the travel time
moments,

�tm��n
� �n

−g�
0




d�̃2F��̃2�
tm��̃2�n

2�
d
dt �̃

2��̃�n�
, �47�

where

F��̃2� = �̃−2g−2/�exp�− G0
g/2�̃−g� . �48�

Notice that d
dt �̃

2� �̃2−g�n
−g and we can now define a function

G��̃2� that provides a kernel for the integration of the func-
tion t��2� to obtain the travel time moment,

�tm��n
� �

0




d�̃2G��̃2�tm��̃2�n
2� , �49�

where

G��̃2� =
F��̃2�
�̃2−g = ��̃2�−1−g/2−1/�exp�− G0

g/2��̃2�−g/2� �50�

and is plotted in Fig. 6.

FIG. 6. Function G��̃2� is the kernel for integrating the root-
mean square of the particle pair separation t��2�, to obtain the av-
erage threshold travel time �t�n

m �. The function is only significant in
the range 10−2��̃2�101.
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We can now deduce that if the scaling of �2 is a power
law, i.e., �2� t�, then the travel time moment �tm��n

should
scale as

�tm��n
� �n

2m/�. �51�

At this stage we need to verify the validity of the trans-
formation �Eq. �49�� and the kernel �Eq. �50�� as they are
based on the PDF equation of Ref. �16� and on the assump-
tion that fluid element pairs cross thresholds �n from below
much more often than from above. We convolve the two
functions G��̃2� and tm��̃2�n

2� to obtain �tm��n
and compare

the result with travel times directly calculated for both m
=1 and m=−1. Use of Eq. �49� requires knowledge of t��2�,
which we plot in Fig. 7 using flow parameters identical to
those used to produce Fig. 5. We define the scale factor of
the convolution as �n=�n�0. In this definition one can try
any value �
1, where � is not necessarily the physical mul-
tiplicative constant �ph=4.48 of the straining stagnation point
model described in the previous section. To aid faster com-
putations we set the multiplicative factor � to 1.2 �37�. This
does not preclude the possibility that the characteristic size
of the multiplicative jump may, indeed, be a physical prop-
erty of the flow �i.e., �ph� since we have seen that the travel
time scaling is independent of �=ln � �Eq. �46��. The results
are shown in Fig. 8.

It is clear that the data produced by the convolution �Eq.
�49�� are in good agreement with the directly determined
travel times �the convolution data is truncated due to the lack
of data for the long time �̃2 values needed for the limits of
the integration of Eq. �49�� except at very small times where
the neglect of initial conditions in Eq. �49� is evident. We
also observe a Richardson-like scaling of t��2�1/3 over two
decades of �2 in Fig. 7 as well as the corresponding power
law, �tm��n

��2m/3 for m= ±1 in Fig. 8, confirming that the
Richardson power-law scaling is valid. However, it is also
noticeable that the power law �tm��n

��n
2m/3 is observed for a

significantly smaller range than in Fig. 7. This is perhaps to
be expected if we consider that the kernel �Eq. �50�� is non-

zero only in the range 10−2��̃2�101. So, if G��̃2� is con-
voluted with t��2� which has a power law, t��2/�, valid in
the range �min����max then the power law for the travel
time, �tm��n

��n
2m/�, will only be valid in the smaller range

10�min
�2

��n�
�max
�10

.
From Eq. �41� and setting m=1 in Eq. �51� the exit time

scales in the same way as �t��n
, i.e.,

�T����� � �n
2/�. �52�

We present results for the exit times �T����� in Fig. 9 using
identical flow parameters as those used to produce the travel
times in Fig. 8. We use the definition of Ref. �32�, that
�T����� is the average time required for fluid element pair

FIG. 7. Scaling of
urmst��2�

L as a function of �2

L2 . Values of �2 are
determined from PDFs of the separation of particle pairs at arbitrary
times in a kinematic simulation used to produce Fig. 5 �i.e., �0

=� and Table II�. The solid line depicts the expected power law
scaling, t���2�1/3, which is observed for approximately two
decades.

FIG. 8. Average travel time for a particle pair to separate from
�0 at t=0 to �n. Initial conditions ��0=�� and flow parameters are
identical as those used to produce Fig. 5. Plots are for �a� m=1; �b�
m=−1. Curves are tending towards a scaling of �tm��n

��n
2m/�,

where 2
� = 2

3 . Data determined from Eq. �49� agree with the directly
calculated values.

FIG. 9. Average exit times �T����� for a fluid element pair to
separate from one specified threshold �n to another ��n. Flow pa-
rameters are detailed in Table II; �0=�. No inertial-range power
law corresponding to g= 2

3 is observed for either �n=��kn
3E�kn� or

�n=�urmskn. g= 4
9 provides a better approximation.
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separations to grow from � to ��. We also use the two forms
of time dependency to check in three-dimensional KS the
assertion made by Ref. �13�, for a two-dimensional form of
the model, that the form of the time dependency does not
significantly effect the scaling properties of pair dispersion.
The first formulation is specified in Eq. �14� and the second
in Eq. �15� and represents each scale of motion being swept
by a single average velocity urms. Clearly the assumption of
an average velocity neglects both the time dependency of the
large-scale sweeping velocities and their direction. However,
on average, this formulation, although incomplete and inac-
curate, has been shown to go some way in representing the
sweeping of the small-scale eddies by the large energy-
containing ones �26�.

It is clear from Fig. 9 that no regime of �T�������2/3 is
observed; indeed one of �T�������4/9 might be a better fit.
Considering that in this study we have shown the validity in
kinematic simulation of Eq. �1� in Figs. 2 and 7, a tendency
towards Richardson scaling in Fig. 8, and the validity of the
PDF form �Eq. �35�� in Fig. 5, which implies �= 2

g =3, it is
puzzling that the exit time diagnostic would not reveal signs
of the same behavior. However, due to computational limita-
tions, we have used a value of �=1.2 that is much smaller
than the physical one, �ph=4.48, that is supported by KS. In
the context of the theory of Ref. �17�, one might expect this
diagnostic to reveal Richardson behavior most clearly when
�=�ph. It might be the case that the argument of Ref. �15�
applies for a restricted range of early times and small sepa-
rations �which can best be captured by the exit time diagnos-
tic for small values of �� before Richardson behavior
emerges. We leave the resolution of this puzzle for future
study as clarifying scaling ranges will require much higher
values of L

� . Such higher values are also required to accom-
modate the broader range of values of � needed, including
�ph. It is interesting to note that fluid element pair statistics
obtained by Ref. �37� using DNS of isotropic turbulence ex-
hibit much clearer Richardson scaling in the exit time statis-
tics than in the direct pair separation statistics. We leave this
issue for related future study as well.

IV. STATISTICAL PERSISTENCE HYPOTHESIS

In the previous section we presented evidence confirming
Richardson scalings in kinematic simulation and showing
that pair separation growth in KS is consistent with the pic-
ture where pairs travel together for a significant time and
then separate suddenly when they encounter straining stag-
nation points in the turbulent flow. In this section we con-
sider the conditions required for the validity of such a pic-
ture.

A. Stagnation point velocities

Since turbulence is a time dependent flow, stagnation
points clearly do not remain stationary. Furthermore, they are
not Galilean invariant. The underlying assumption in Refs.
�17,22� is that there exists some frame of reference F0 where
the velocity streamline structure of the turbulence and hence
the position of the stagnation points within that structure is,

in some statistical sense, persistent. Goto and Vassilicos �17�
call this the statistical persistence hypothesis �SPH�, a con-
cept which implies that stagnation points in frame F0 can
leave their imprint on pair diffusion statistics, leading, for
example, to a PDF equation such as Eq. �33�.

In any frame F the fluid velocity ui�x , t� vanishes at a
stagnation point that has a position x=s�t�. This condition
remains for as long as the stagnation point exists so that

d

dt
ui�s,t� = 0. �53�

Therefore we can define a velocity Vs� d
dts�t� that describes

the motion of the stagnation point, and

�ui�s,t�
�t

= − Vs · �ui�s,t� . �54�

By definition, the fluid acceleration is

ai =
�ui

�t
+ u · �ui �55�

and at x�t�=s�t� where ui=0, it therefore follows from Eqs.
�54� and �55� that

ai = − Vs · �ui. �56�

This relation is kinematic and valid in any frame of reference
F. The solution of Eq. �56� is given via Cramer’s rule,

Vs = −
�det�a,�2u,�3u�,det��1u,a,�3u�,det��1u,�2u,a��

det��1u,�2u,�3u�
,

�57�

where � j =
�

�xj
. This allows us to forgo the complicated pro-

cess of not only finding a stagnation point in the flow but
then following it in a Lagrangian sense through a time-
dependent flow field. Indeed, only a snapshot of the flow
field is necessary to determine the stagnation point velocities
with Eq. �57�.

From Eq. �56� it follows that the root-mean-square values
of the acceleration and stagnation point velocity are related
by

a� � Vs�
u�

�
�58�

since we expect the spatial derivative of the velocity to be
dominated by the smallest scales �any dashed quantity in the
remainder of the paper will denote an rms quantity although
we keep urms instead of u� for consistency with the rest of
this study�. In Eq. �58�, a� is calculated by averaging over all
stagnation points in frame F and is therefore equal to the
root-mean-square al� of the local acceleration al�

�
�tu �we

also define the convective acceleration ac�u ·�u�. Later in
this section we verify in kinematic simulation the validity of
Eq. �58� with a� replaced by al� and also test whether Eq.
�58� remains valid if a� is calculated by averaging over the
entire flow. If we assume the small scale velocity scaling �4�
u������1/3and the associated scaling ��

urms
3

L , then
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Lal�

urms
2 � � Vs�

urms
��L

�
�2/3

, �59�

where the acceleration variance has been normalized with the
large scales.

In KS homogeneous isotropic turbulence where large
scale sweeping of small scales is absent, we might expect

Kolmogorov �4� scaling for al�, i.e. al��
u�

2

� , which implies

Lal�

urms
2 � �L

�
�1/3

. �60�

It then follows that

Vs�

urms
� �L

�
�−1/3

. �61�

The negative scaling of
Vs�

urms
implies that, in a statistical sense,

the movement of the stagnation points becomes less signifi-
cant when compared with the movement of the fluid ele-
ments of the flow �i.e., the movement characterized by urms�
as the Reynolds number increases. In this way, the stagnation
points become more persistent in time and space allowing
the fluid element pairs to “feel” the imprint of this coherent
�persistent� stagnation point structure on their statistics. DNS
experiments �38,18� agree with the concept of increasing
stagnation point persistence as both studies report La�

urms
2

�� L
�

�1/2 which may be some way from the scaling predicted
by application of Ref. �4� but is consistent with the DNS

result �18�
Vs�

urms
�� L

�
�−1/6 which also implies increasing stag-

nation point persistence with increasing Reynolds number.

B. Persistence of stagnation points in kinematic
simulation

Of course the persistence of these stagnation points and
the statistical persistence hypothesis can only be established
if a frame exists where �Vs� �the averaging operation �¯� is
taken over all stagnation points in the relevant frame of ref-
erence� is small enough �ideally zero�. It is in such a frame
that we can argue that persistence of stagnation points in-
creases as L

� increases on account of

Vs�

urms
� �L

�
�q

, �62�

with q�0 �q=− 1
3 for Ref. �4�, q=− 1

6 for current DNS�. DNS
evidence �18� suggests that �Vs�=0 is the frame F0 where the
mean flow is zero, i.e., where �u�=0 �the averaging operation
�¯� is taken over all space or, equivalently, over all realiza-
tions since the turbulence is considered homogeneous�. The
DNS evidence �18� also suggests that F0 is the only frame
where �Vs�=0, and that �Vs� is, in general, proportional to
the relative velocity between any frame F and frame F0.

Figure 10 presents examples of PDFs of Vs in frame F0
obtained by kinematic simulations with flow parameters de-
tailed in Table III over a wide range of inertial-range extent
and with a variety of time-dependency formulations. Sam-
pling took place over a fixed volume LV

3 where LV is the

largest scale involved in the largest inertial range simulated.
Each simulation consisted of 5�106 random initial starting
points for a Newton-Rhapson algorithm searching for the
stagnation points hence leading to an average distance be-
tween starting points of approximately 6�. Many realizations
of the flow field were used so that the wave-vector orienta-
tions have an approximately uniform distribution �NRNk�1
�106�. Clearly, Fig. 10 shows that the assumption that
�Vsi

�=0 over the flow domain in F0 is a valid one. Note that
when �=0 then Vs�0 at all stagnation points in F0 because
�ui

�t �0.
The SPH claims that there is a frame where the persis-

tence is maximized. To investigate the behavior of the stag-
nation points in other frames of reference F we investigate
the average accelerations conditional on the velocity U of the
reference frame with respect to F0. With acceleration being
Galilean invariant, accelerations at stagnation points in F are
the same as accelerations at points where u=U in F0. Hence
average accelerations conditional on u=U in F0, �a 	U�, are
equal to −�Vs ·�u�, where the average is taken over all stag-
nation points in frame F. Kinematic simulations for L

� =10,
100, 1000 with persistence parameters �=0, 0.5, 5.0 using
the time-dependency formulations from Eqs. �14� and �15�
all lead to �ai 	u�=0 for any u. This implies that in any frame
F �Vs ·�u�=0 and therefore Vs and �u are uncorrelated in
KS.

These results, and in particular the result �ai 	u�=0 which
underpins them, are perhaps to be expected when one con-

FIG. 10. Example PDFs of the stagnation point velocity Vsi
. In

these simulations � remains fixed while L is increased to control the
size of the inertial range �see Table III�. Although there is variation
in the range of Vsi

, the PDFs all scale with the rms of the stagnation
point velocity in a similar way.

TABLE III. Run specification for stagnation point velocity ex-
periments. NR is the number of KS flow field realizations and Ns is
the number of starting points for the Newton-Rhapson algorithm
per realization.

k�= 2	
� �2	 m−1� NK urms �m s−1� NR Ns

1000.0 100 1.0 10000 500
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siders the lack of dynamics and the related lack of Fourier
mode interactions in kinematic simulation. Unlike DNS �18�,
which includes the dynamics of turbulence, kinematic simu-
lations have no mechanism for generating any coherent re-
storing accelerations that are anti-correlated with the velocity
�i.e., a large velocity that is associated with a large accelera-
tion in the opposite direction�.

The KS results of Fig. 11 show that �Vs�=−U in frame F
for many values of L

� and �. We have also confirmed that Fig.
11 remains the same for either formulation of �n�kn�. Hence
the statistical persistence is maximized at stagnation points
in F0 where �Vs�=0, and this statistical persistence improves

as L
� →
 due to

Vs�
urms

�� L
�

�q with q�0.

C. Acceleration scalings

Taking advantage of kinematic simulation’s ability to im-
pose an arbitrary form of energy spectrum on the flow, we
can reformulate Eq. �59� into more general forms using the
scaling u��urms� �

L
��p−1�/2, which follows from E�k�

�urms
2 L�kL�−p;

Lal�

urms
2 � � Vs�

urms
��L

�
��3−p�/2

. �63�

Similarly, the Kolmogorov scaling in Eq. �60� can be gener-

alized on the basis of al��
u�

2

� to give

Lal�

urms
2 � �L

�
�2−p

. �64�

Having split the acceleration into a local component, al

= �
�tu, and a convective component �39�, ac=u ·�u, we cal-

culate both components in frame F0 using the KS velocity
field and its derivatives.

The results for the scalings of the root-mean-square val-
ues of the local and convective accelerations, respectively, al�
�averages taken over all space generate same scaling as av-
erages taken over stagnation points only� and ac� �averages

taken over all space� can be seen in Fig. 12. The first point of
interest in the figure is that the scaling of the rms convective
acceleration component is

Lac�

urms
2 � �L

�
��3−p�/2

�65�

regardless of the time dependency of the turbulent field �see
Fig. 12�b��. This can be understood as it follows from ac�

�u�
u�

� which holds in KS because of its lack of sweeping.
In contrast, the rms of the local acceleration al� depends

very much on the formulation of �n�kn�, since it scales as

Lal�

urms
2 � �L

�
�2−p

�66�

when the unsteadiness frequency is determined by Eq. �14�
yet scales in an identical way to the convective component,
i.e.,

FIG. 11. Average stagnation point velocity �Vs� in frame moving
with velocity �U ,0 ,0�. Flow parameters are detailed in Table III. In
a statistical sense the stagnation points move in the opposite direc-
tion to the frame of reference with velocity −�U ,0 ,0�.

FIG. 12. Scaling with L
� of the rms values of �a� the local accel-

eration component al, and �b� the convective acceleration compo-
nent ac. Flow parameters are detailed in Table IV. The convective
component is independent of the time dependency of the flow and
the scaling is universal for all simulations. Both the local accelera-
tion component’s strength and scaling behavior depend on the time
dependency of the flow.
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Lal�

urms
2 � �L

�
��3−p�/2

, �67�

when Eq. �15� is used.
As a result it is the relative strength of the local compo-

nent to the convective component,
al�

ac�
, that ultimately deter-

mines the scaling of a�2=al�
2+ac�

2 in KS. It is clear from
Figs. 12 and 13 that ac� dominates al� when �n�kn

2/3 and �

=0.5 even at modest values of L
� . However, when �=5.0, ac�

does not begin to dominate al� until L
� 
103, which explains

the deviation of the total acceleration variance from a scaling
of La�

urms
2 �� L

�
��3−p�/2 towards a more Kolmogorov-like scaling

for L
� �103 in Fig. 14 where we plot the scaling of the total

acceleration variances �obtained from averages over the en-
tire flow� for various values of the imposed energy spectrum

exponent p and both models of unsteadiness frequency �n.
The common flow parameters are detailed in Table IV.
Clearly, the scaling La�

urms
2 �� L

�
��3−p�/2 is observed rather than of

the Kolmogorov-type scaling, La�
urms

2 �� L
�

�2−p for all the simula-

tions except for a deviation at values of L
� �103 when �n

=5.0�kn
3E�kn�.

Direct numerical simulation of isotropic turbulence �39�
have shown that al and the solenoidal part of ac are approxi-
mately equal but antialigned in F0. Referring to Figs. 12 and
13 it is clear that no such tendency exists in kinematic simu-
lation since a��ac�. This adds to the argument above regard-
ing the lack of dynamics in kinematic simulation, but also
suggests that Kolmogorov scaling of a� seems to be closely
related to the antialignment of al and the solenoidal part of
ac.

D. Statistical persistence

We directly determine the scaling of
Vs�

urms
using flow pa-

rameters in Table III and Fig. 15 depicts the behavior with
increasing L

� .
It is clear from Fig. 15 that in the cases where the pseu-

dosweeping time dependency �Eq. �15�� is implemented in
kinematic simulation, the scaling agrees with Eqs. �63� and

�67� i.e., q=0 and
Vs�

urms
=c where c is a dimensionless constant

dependent on, and in fact increasing with, �. When it is Eq.
�14� that is used to determine the time dependency of KS, the
results seem to indicate that q takes to the Kolmogorov
value, q=− 1

3 in agreement with Eqs. �63� and �66�. Let us
make the important point that with q=0 in our KS, the sta-
tistical persistence of stagnation points is measured by c and
is a direct reflection of the persistence parameter as c��. In
spite of q being different from the Kolmogorov value q
=− 1

3 , Richardson scalings are observed in kinematic simula-
tion �as reported in this paper� only for small values of �
�13,22�, thus confirming the view that Richardson scaling
requires some statistical persistence of stagnation points to
be realized �17�.

In investigating the source of the scalings found in Fig.
15, we can make a relatively trivial observation for the case
where �n�kn�=�urmskn. In these simulations the velocity
stagnation points move with the large scale velocity �and not
relative to each other� so that

Vs� �
�n�kn�

kn
� �urms. �68�

Therefore the scaling does not depend on the length scale
and c is proportional to � as we indeed observe �see Fig. 15�.

FIG. 13. Scaling with L
� of the ratio between the rms values of

the local acceleration component al, and the convective acceleration
component ac. Flow parameters are detailed in Table IV. The be-

havior is similar to that of
Vs�

urms
observed in Fig. 15.

FIG. 14. Scaling of rms acceleration a� normalized with the
large scales. Flow parameters detailed in Table IV. The scaling 3−p

2
is observed for all values of the energy spectrum exponent p and for
all models of unsteadiness frequency except for �n=5.0�kn

3E�kn�
when L

� �103. Data for p= 5
3 are brought together in the interests of

clarity.

TABLE IV. Run specification for stagnation point velocity ex-
periments. NR is the number of KS flow field realizations and Na is
the number of random sampling points per realization.

k�= 2	
� �2	 m−1� NK urms �m s−1� NR Na

1000.0 100 1.0 1 106
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For small enough values of �, the proportionality constant
c����1.0, thus supporting SPH in kinematic simulation with
�n�kn�=�urmskn for small values of �, i.e., that the motion of
the stagnation points is statistically insignificant compared to
the characteristic motion of the fluid. If we apply the same
reasoning to the simulations where �n=��kn

3E�kn�, even
though the modes may be moving in complex ways relative
to each other, we find that the rms velocity of stagnation

points related to length scales 2	
k is given by

�n�kn�

kn
�kn

−1/3. It
is therefore reasonable to expect that Vs� �where all stagnation
points are taken into account� is dominated by kNK

= 2	
� , and

therefore

Vs�

urms
� �L

�
�−1/3

. �69�

This scaling is also observed in our KS �see Fig. 15� and
supports SPH in kinematic simulation with �n�kn�
=��kn

3E�kn�.

E. Lifetime of stagnation points

The lifetime of stagnation points is also crucial to the
statistical persistence hypothesis. For the theory to be valid,
not only must the stagnation points become more persistent
in space as the Reynolds number increases, but they must
also be persistent in time, i.e., they must exist for long
enough times. The lifetime of stagnation points must be de-
termined by the time that it takes for one stagnation point to
meet another, since such a meeting seems to be the only
mechanism by which stagnation points can be destroyed.

Any stagnation point can be thought of as having a
“sphere of influence” surrounding them which is defined by a
characteristic length �ssp over which the curvature of the
streamlines that emanate from it remain correlated. From Eq.
�28� �in the case p= 5

3 , Ds=2, and d=3�, the average distance
separating two stagnation points associated with the length
scale �ssp is

�ns� L

�ssp
��−1/d

� L��ssp

L
�2/3

. �70�

We can therefore calculate a time tssp��ssp� for stagnation
points of size �ssp approaching each other head-on as the
ratio of the average distance given by Eq. �70� to the char-
acteristic velocity of such stagnation points, i.e.,

tssp��ssp� =
�ns� L

�ssp
��−1/d

urms��ssp

L
�1/3 . �71�

However, most of the time stagnation points will miss
each other, so the average lifetime of stagnation points must
also involve the probability that stagnation points may col-
lide. This probability p� �ssp

L
� is proportional to � �ssp

L
�d

ns
� �ssp

L
�,

which scales as � �ssp

L
�3−2

in the present case �d=3, Ds=2�.
The average lifetime of a stagnation point is

Tssp = �
�/L

1

tssp��ssp�p��ssp

L
�d��ssp

L
� . �72�

Substituting into Eq. �72�,

Tssp � �
�/L

1 L

urms
��ssp

L
�1/3��ssp

L
�d��ssp

L
� , �73�

and integrating we finally arrive at the average lifetime of a
stagnation point,

Tssp �
L

urms
. �74�

That stagnation points essentially last as long as the flow
realization �if we think of a new realization of the field start-
ing at L

urms
intervals� is entirely consistent with the notion that

the persistent-in-space �and now -in-time� stagnation point

FIG. 15. Scaling of the rms values of the stag-
nation point velocity Vs� with L

� . Flow parameters
detailed in Table III. The two dotted lines corre-
spond to � L

�
�−1/3. The two dashed lines correspond

to � L
�

�0.
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field is distributed in such a way that determines the scaling
of the mean-square separation to be of the Richardson �1�
form as the Reynolds number increases.

V. SUMMARY AND CONCLUSIONS

The fundamental process of the behavior of two fluid el-
ements separating in a kinematically simulated field has been
investigated. Initially, direct calculations of the separation
statistics are studied. Later, an approach based on the stream-
line topology of the turbulent flow field �13,17,22� is used.

Following from the uncertainty of previous studies
�13,14,15� as to kinematic simulation’s ability to reproduce
the temporal scaling of the fluid element pair’s separation,
��2�t��� t3, predicted by Ref. �1�, we determine that the tem-
poral scaling for an initial separation �0 significantly smaller
than � in our KS to be neither Richardson-like nor as pre-
dicted by Ref. �15� based on arguments citing the lack of
small-scale eddy advection in kinematic simulation. We fol-
low the advice of Ref. �14� and directly determine the mean
diffusivity, d

dt ��
2�t��, to minimize the effects of the initial

conditions. We find that KS does, indeed, reproduce Richard-
son’s diffusion prediction d

dt ��
2�t����4/3 over a wide range

of scales and with much less dependence on �0, and not the
diffusivity predicted by Ref. �15� of d

dt ��
2�t����14/9. Fur-

thermore, we show that the adaptive integration time step
used by Thomson and Devenish �15� favors the temporal
scaling ��2�t��� t9/2.

The validity in kinematic simulation of the generalized
self-similar solution to the PDF equation of the pair separa-

tion �17�, P˜��˜�, derived from the concept of velocity stagna-
tion points �13,22� is tested. Good agreement is found in the
case where its variance �2 obeys Richardson scaling.

The time dependencies of the pair separation statistics are
investigated. We establish a relationship between the average
travel time �tm��n

of a pair’s separation to a threshold �n and
the inverse function of the temporal evolution of the rms
separation t��2�. This relationship shows good agreement

with directly calculated values. The function t��2� can be
made to scale in a Richardson-like fashion for approximately
two decades with a careful choice of the initial separation,
�0=�. This is in contrast to the choice of �0 �significantly
smaller than �� when determining ��2�t��, which led to
anomalous scaling. We show that due to the nature of the
finite range of the integration kernel G��̃2�, the travel times
�tm��n

exhibit very short ranges of Richardson power law
behavior. The exit times �T��n�� are shown to exhibit power-
law behavior different to Richardson scaling.

The concept of straining stagnation points is explored fur-
ther and a mathematical formulation of the statistical persis-
tence hypothesis �17� �SPH� is introduced using exact kine-
matic relations �see also Ref. �17��. We show that in KS, in
the frame F0 where the mean-fluid velocity is zero, the per-
sistence of straining stagnation points is maximized and SPH
is valid. In further testing the validity of the SPH in kine-
matic simulation, we find that the total acceleration variance
scales as La�

urms
2 �� L

�
��3−p�/2 rather than La�

urms
2 �� L

�
�2−p �for E�k�

�k−p� except in the case where �n=5.0�kn
3E�kn� and L

�
�103. By splitting the acceleration variance into local al� and
convective ac� components we find that the single case of
deviation from La�

urms
2 �� L

�
��3−p�/2 at moderate values of L

� is
caused by the local component of the acceleration al� which
scales à la Kolmogorov when �n��kn

3E�kn�, dominating the

convective component ac� which always scales as
Lac�

urms
2

�� L
�

��3−p�/2. We show that for small values of � the reverse is

true and when �n�urmskn both components scale as
Lal�

urms
2

�
Lac�

urms
2 �� L

�
��3−p�/2. Finally, we present an argument which

shows that the mean lifetime of stagnation points scales with
the integral time scale of the turbulence.
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